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Fig. 1. Depiction of how merging adjacent micromap values into a 4-way tree structure allows it to be
compressed to around 75 % of the original size with an example rendering from the New Sponza [2022] scene
showing the impact of increasing subdivision levels.

Alpha masked geometry such as foliage has long been one of the trickier things to render efficiently, both for
rasterization based approaches and for hardware accelerated ray-tracing. Recently, a new type of primitive
was introduced to the Vulkan® and DirectX® ray-tracing APIs that promises to alleviate this issue: Opacity
Micromaps, a structure that uses a bit of extra memory as hints to the pipeline when it should actually call
the AnyHit-shader. In this paper, we extend this primitive with a novel compression method that uses the
concept of succinct 4-way trees to reduce the memory footprint by up to 110 times, including an algorithm
for looking up micromap values directly from this compressed form. Further, we perform a comprehensive
analysis of the generated micromaps to demonstrate their performance in terms of both memory footprint
and frame render time compared to a number of similar structures. Finally, we highlight some aspects of the
extension that developers and artists should be aware of to make the most out of it.
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1 INTRODUCTION
Transparency has always been a challenging effect to apply for computer graphics systems. Partic-
ularly for rasterization based methods that frequently have to resort to various tricks to ensure that
the effect looks correct [McGuire and Mara 2017]. In contrast, the linear propagation of rays simpli-
fies this matter for ray-tracing methods, typically removing the need for these tricks. Thus, with the
advancement in hardware accelerated ray-tracing methods, the hope has been that transparency
effects would become much more prevalent. This has not materialized in practice, in part due to
the remaining dependence on the rasterization pipeline in many frameworks, but also due to the so
called AnyHit-shader [Werness 2023] that must be invoked to correctly apply most transparency
effects. As this shader is situated in one of the innermost loops of the ray-tracing pipeline it has
ended up as a major bottleneck for these effects.

Recently, there has been an effort to improve this matter for one particular transparency effect:
Alpha masked geometry, which is frequently used on foliage, leaves and branches in many scenes.
This is done by introducing a new kind of abstraction known as an opacity micromap that encodes
a limited amount of transparency information on a subsection of each triangle and allows this
information to be quickly accessed with the ray-triangle intersection data, without having to load
any other metadata. And most crucially, without having to call the AnyHit-shader during the
traversal or even interrupt the hardware traversal [Sjöholm 2022], thus promising an improved
ray-tracing performance for these effects.

2 RELATEDWORK
The concept of micromaps were first presented by [Gruen et al. 2020]: A relatively simple format
that divided a triangle into a regular grid with a simple indexing algorithm. This basic concept has
remained in the current Vulkan® and DirectX® extension, but the subdivision scheme has been
changed as shown in figure 2 and discussed further in Section 4.3.

Further, [Fenney and Ozkan 2023] were first to present a scheme for compressing a two-
dimensional single channel opacity map to the same states as the micromap presented by Gruen
et al.. This scheme compresses the maps very well (down to between 50 % to 25 % of the original
size), but are fundamentally different from the final micromaps in use by Vulkan® and DirectX®. A
direct comparison to our work is difficult to accomplish for two reasons: (1) Their methods are not
directly available in any Graphics API, and (2) the encoding scheme uses assets with quads in a
way that is not widely used in practice. Interestingly, Fenney and Ozkan also mention investigating
an explicit 3-level quad-tree method as well as a wavelet mod 3 scheme. However, no details
regarding this investigation was included in their work.

Coincidentally, work related to compressing displacement data into micromaps are covered
by [Maggiordomo et al. 2023]. Notably, this type of micromap is primarily used to reduce the
footprint of displacement data rather than to provide any frame-time improvement. However, as
this work is not related to opacity micromaps, it will not be covered by this paper.

Fig. 2. A comparison of the subdivision schemes used by Gruen et al. (left), Vulkan® and DirectX® (right)
at equivalent levels (i.e., # = 2, 4 and = = 1, 2 respectively). Note in particular the indexing order and the
rounding pattern at the edges and corners, here shown with red arrows.
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3 BACKGROUND
This section provides a general background to the technologies used to develop our algorithms.

3.1 Micromaps
In brief, a micromap is simply a linear array of values mapped into fixed sub-areas of a triangle
specified by a space-filling curve as shown in figures 2 and 3. To date, there are only two kinds of
official micromaps:
• Opacity Micromaps (OMM), and
• Displacement Micromaps (DMM).

Of these, only the opacity micromaps is currently available as a generally available Vulkan® and
DirectX® extension [Werness 2022]. Further, an opacity micromaps can only contain a very specific
set of opacity values depending on whether it is operating in the so-called 2-state or 4-state
mode:

2-State 4-State

0b0 Fully Transparent
0b1 Fully Opaque

0b00 Fully Transparent
0b01 Fully Opaque
0b10 Unknown Transparent
0b11 Unknown Opaque

As these values only occupy either 1 or 2 bits each, the opacity micromap is typically handled as a
type of bit-vector. Functionally, the values are mostly self-explanatory:
• Fully transparent and opaque means that that particular sub-triangle is either completely

opaque or transparent.
• Unknown values should look up the actual opacity values using some other method, by e.g.,

looking it up in an alpha texture. Additionally, these values can be converted to an equivalent
2-state value, e.g., when it is undesirable to perform the alpha texture lookup, such as for
shadow-rays in the ray-tracing pipeline.

Thus, this extension is primarily aimed at improving the rendering performance of alpha mapped
geometry, such as foliage for the DirectX® and Vulkan® ray-tracing and ray-query extensions by
avoiding most, if not all, AnyHit calls or returns to the calling shader. A case where ray-tracing has
long promised to excel over rasterization based methods, but failed in practice, primarily due to
having to call the AnyHit-shader inside the ray-tracing traversal pipeline.

Opacity micromaps are intended to solve this: Provide a relatively small amount of extra data
with hints to the ray-tracing pipeline when to avoid calling the AnyHit-shader, and consequently

uv2index(u, v, level)
7

(0.28,0.4)

Fig. 3. Description of the barycentric coordinate to opacity micromap indexing process.
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reduce the overall texture and memory bandwidth. However, these optimizations are entirely in the
hands of the users: It is up to them to generate appropriate micromaps and apply them correctly to
see any appreciable improvements.

3.1.1 Highest Useful Subdivision Level. In 4-state mode, the subdivision level is typically only
another tool to dial in performance, effectively trading runtime at the expense of memory. In
2-state mode, the triangle shape and subdivision level directly influence the final geometry as
there are no unknown values, and consequently no way of calling an AnyHit-shader. This shape
may be distinctive, especially compared to low resolution alpha texels, as seen in figures 1 and 6.
Thus, if the intent is to conservatively recreate the alpha texture with micromaps, it is useful to
estimate the maximum useful subdivision level = by computing when the texture coordinate length
of a subtriangle along the longest edge 4 is less than one pixel, i.e., when the subtriangles are
smaller than the pixels. In other words:

max( |40 |, |41 |, |42 |)
2=

≥ 1⇒ log2 max( |40 |, |41 |, |42 |) ≤ = (1)

This is valid regardless of any minification or magnification issues introduced by camera motion as
long as the texture coordinates are static. However, this becomes more complicated for primitives
with coordinate transforms, but if it is possible to estimate the maximum deformation, the same
approach can still be used.

3.1.2 Special Indices. In Vulkan®, Opacity micromaps are applied on triangles by providing an
array of so-called triangle indices at the creation of a bottom level acceleration structure (BLAS).
However, it is relatively common for micromaps to contain only a single value, which may be
wasteful, especially at high subdivision levels. To alleviate this, Vulkan® provides a set of special
index values to map directly to these cases:

-1 VK_OPACITY_MICROMAP_SPECIAL_INDEX_FULLY_TRANSPARENT_EXT

-2 VK_OPACITY_MICROMAP_SPECIAL_INDEX_FULLY_OPAQUE_EXT

-3 VK_OPACITY_MICROMAP_SPECIAL_INDEX_FULLY_UNKNOWN_TRANSPARENT_EXT

-4 VK_OPACITY_MICROMAP_SPECIAL_INDEX_FULLY_UNKNOWN_OPAQUE_EXT

These values can be used in some cases to reduce bandwidth or otherwise simplify the micromap
processing.

3.2 Succinct Data Structures
One type of data structure that is not widely used throughout the field of computer graphics is
the so-called succinct data structure, originally introduced by [Jacobson 1989]. These types of data
structure are so called because of their small memory footprint: Typically only a constant factor
from the information-theoretical minimum.

As a concrete example, consider all binary trees with = nodes. There are only a finite number of
these trees, given by the Catalan number �= [2023, A000108]. As such, there are approximately 4=

distinct trees for large values of =. Consequently, it is possible to enumerate them and encode the
trees using only log2 (4=) = 2= bits.

Depending on the desired properties, a number of different encoding schemes could be used: The
simplest of which is to perform a depth-first search over the tree, setting a bit to 1 if the node is an
internal node and 0 otherwise. Thus representing the entire tree and allowing us to readily count
the number of internal and leaf nodes in the tree using population counts on the bits themselves.
Further, these counts can be used as indices for retrieving data stored in the abstract tree nodes.
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4 ALGORITHMS
In this section we will present the primary algorithmic contributions of this paper.

4.1 Succinct Tree Encoding
There are quite a few ways of encoding an existing micromap as a succinct tree, but one of the
simplest can be expressed as follows:
• Construct the perfect 4-way tree from the flat micromap from the bottom up by merging

adjacent nodes with identical values (algorithm 1), then
• encode the resulting perfect tree as a succinct tree (algorithm 2).

An example of this is illustrated in figure 4.

Data: Micromap map
Result: Perfect-Tree
for level in<0?.;4E4; − 1 to 0 do

foreach subtriangle at ;4E4; do
if all child nodes contain the same micromap value then

Convert this node to a leaf node
else

Mark the node as an internal node
end

end
end

Algorithm 1: Algorithm used to construct a perfect tree from a flat micromap in a bottom-up
fashion.

Data: Perfect-Tree
Result: Bit-vectors Succinct-Tree and Data
stack← root node of Perfect Tree;
while stack is not empty do

node← stack.pop();
if node is an internal node then

Succinct-Tree.append(1);
add all child nodes to stack;

else
Succinct-Tree.append(0);
Data.append(node.value);

end
end

Algorithm 2: Algorithm used to encode a perfect tree into its succinct representation using
two separate bit-vectors Succinct-Tree and Data. Note that we represent internal nodes as 1 and
leaf nodes as 0.

4.2 Succinct Tree Decoding
Given an encoded tree, it is straightforward to convert this back to a non-encoded tree, and by
extension, the original micromap. It is however also possible to traverse this bit-vector to directly

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 3, Article 45. Publication date: July 2024.



45:6 Waldemarson et al.

1 0 0

0 1 0 2
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0 0 0

0 0 0
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Node combining

Tree Coding

Succinct Tree Encoding

Tree

Data 0b10_0001_0000_0001

0b0_0001_0001

Fig. 4. A simple, but illustrative example on how to encode a flat 4-statemicromap with 2 subdivision levels
as a succinct tree.

access the underlying micromap value. This can be done with algorithm 3. Note that the algorithm
is strongly tied to the bit-representation of the tree. If the representation is changed, the algorithm
must change accordingly.

Data: Succinct-Tree, Data
Result: Micromap value
Fn tree-lookup(D, E):

C = 0; 3 = 0;
while true do

if C is internal node in tree then
C = C + 1;
2ℎ8;3 = step(D, E);
C, 3 = bitscan(CA44, 30C0, 2ℎ8;3, C, 3);

else
return data[3];

end
end

End Fn

Fn bitscan(CA44, 30C0, 2ℎ8;3, C, 3):
while C < CA44.;4=6Cℎ and 2ℎ8;3 > 0 do

if tree[C] is internal then
2ℎ8;3 = 2ℎ8;3 + 4;

else
3 = 3 + 1;

end
2ℎ8;3 = 2ℎ8;3 − 1;
C = C + 1;

end
return t, d;

End Fn
Algorithm 3: Algorithm to directly look-up a micromap value from the tree representation.
Note that the step function is described in algorithm 4 and here returns the index of the child
node to visit in the range 0 to 3.

4.3 Micromap Indexing
TheVulkan® micromap extension includes an algorithm for converting barycentric coordinates to an
index into themicromap structure, in this paper referred to as the reference algorithm [Werness 2022].
However, this algorithm is arguably not very easy to understand due to the opaque nature of the
numerous bit-wise operations. To that end, we devised an arguably simpler, iterative algorithm (4),
that to our knowledge, has not been published elsewhere yet. In brief, it does the following:
• Explicitly compute all barycentric coordinates for the hit point, then use these to determine
which of the 4 sub-triangles (!eft, "iddle, 'ight or )op) is hit by the intersection.
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• Increment the index and recompute the barycentric coordinates according to the intersected
subtriangle.
• Recurse until the desired subdivison level is reached.

Note that the majority of the conditions and their ordering is done to correspond exactly with
the reference algorithm, as it has some peculiar rounding behavior in the edge and corner cases,
as shown in figure 2. Moreover, a detailed description of this algorithm and how the expressions
were derived can be found in Appendix A. Additionally, this new algorithm has been proven to be
equivalent to the reference up to subdivision level 15 using the ACL2 theorem prover [Kaufmann
and Moore 2004] using rational numbers. It is not clear whether the discrepancy at level 16 is an
error in our algorithm, a failure in the reference due to an overflow condition or some kind of
floating point issue. However, it is obvious that the reference algorithmmust be rewritten to handle
more than 16 subdivision levels as the final interleaving step cannot handle more than 16-bit values.
Although, a micromap of that size (4GiB) appears to be of little practical use at this time.

Data: Barycentric coordinates D, E , subdivision ;4E4;

Result: Opacity micromap 8=34G
Fn uv2index(D, E, ;4E4;):

F = 1.0 − D − E ;
return step(D, E,F, 0, false, false);

End Fn

Fn step(D, E,F , index, mid-flip, top-flip):
if depth = ;4E4; then

return index;
if top-flip then

!,", ',) = 2, 1, 0, 3
else

!,", ',) = 0, 1, 2, 3
end
ifF > 0.5 then

return step(2D, 2E, (F − D − E), 4 · 8=34G + !, mid-flip, top-flip)
else if E ≥ 0.5 and not (E = 0.5 and mid-flip) then

return step(2D, (E − D −F), 2F, 4 · 8=34G +) , mid-flip, not top-flip)
else if D ≥ 0.5 and not (E = 0.5 and mid-flip) then

return step((D − E −F), 2E, 2F, 4 · 8=34G + ', mid-flip, mop-flip)
else

return step((D + E −F), (F +D − E), (E +F −D), 4 · 8=34G +" , not mid-flip, top-flip)
end

End Fn
Algorithm 4: Algorithm used to convert a pair of barycentric coordinates to a linear index
into an opacity micromap. Note in particular that the step function is tail-recursive, and as such
can easily be changed to an iterative method.
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Table 1. Description over all tested scenes with a number of relevant properties. Note that micromap features
may depend on the subdivision level and thus are listed as a range.

Property Sponza Ecosys New Sponza San Miguel Landscape

Instances 25 12 755 4 380 748 407 691
Meshes 25 141 4 808 370
Triangles 262 267 1 171 562 2 023 747 2 503 044 27 885 845
Textures 38 9 5 237 212
Alpha Masks 3 8 1 236 211
Opacity Micromaps 22 to 3792 24 to 128 4 to 40 1409 to 52 118 832 to 17 636
Special Indices 218 to 28 427 1080 to 8280 0 to 1 219 113 147 313 to 394 049 287 534 to 7 498 852

CryTek Sponza [2011] Ecosys [1998] New Sponza [2022] San Miguel [2010] Landscape [2016]

5 RESULTS
The evaluation of the algorithms is split into two parts: One representing the compression potential
of the succinct tree encoding, the other, the frame rendertime. In both cases, the algorithms are
tested on the scenes described in table 1. Opacity micromaps are generated from the original alpha
masks up to subdivision level 6, all of which can be found in the supplemental material. In total,
we evaluate six different methods:
Micromap Micromaps emulated in software.
Tree Tree encoded micromaps.
Vulkan Fast-Build (FB) Vulkan Micromaps built with the Fast-Build flag.
Vulkan Fast-Trace (FT) Vulkan Micromaps built with the Fast-Trace flag.
Bitmask A pseudo-texture where every 1 or 2 bits represent the alpha value.
Texture The original alpha texture.
Every method except the texturing approach can also run in either 2-state or 4-state mode as
described in Section 3.1.

5.1 Compression
We evaluate each opacity method by estimating their total memory footprint. For micromap
approaches, this includes the micromap data itself, the so-called triangle indices, and any metadata
structure. Only the micromap data is included for the Vulkan methods however, as they may embed
any additional metadata in the acceleration structure. Further, the bitmask and texture approach
need to load vertex indices and texture coordinates in addition to the bitmask or texture. This
data is listed in table 2 and plotted in figure 5 for increasing subdivision levels. Finally, the tree
compression ratio in figure 5 is computed against the original opacity micromap data.

5.2 Runtime
The frame rendertime is evaluated by implementing each method in an AnyHit shader, except for
the Vulkan methods, as they cannot be controlled in such a fashion. All methods are rendered at
1920 × 1080 with a refining ambient occlusion and stochastic transparency algorithm on an Nvidia
RTX 3080 and 4080. Each sample time is gathered from the start- to end-of-pipe as reported by
the Vulkan pipeline querying API. Note that the values presented in table 3 and figures 6, 7 and 8
represent the average over all viewpoints in a given scene weighted by the number of rendered
frames. A per-pose breakdown is available in the supplemental material, however.
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Fig. 5. Plot over the memory footprints and micromap tree compression potential for increasing subdivision
levels in the San Miguel [2010] scene. The results are similar for all tested scenes and thus omitted for brevity.
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Table 2. Total memory footprint in megabytes (MB) required by the various opacity methods for each scene.
Note that the fast-trace and fast-build has the same footprint and that the micromap and tree method
requires the same amount of metadata and that all micromap methods use subdivision level 6.

Mode Method Sponza Ecosys New Sponza San Miguel Landscape

2-State Micromap 1.842 0.062 0.020 24.091 8.192
Tree 0.139 0.002 0.003 0.960 0.630
Vulkan (FT/FB) 1.915 0.067 0.021 25.103 8.574
Bitmask 0.188 0.320 2.000 5.428 14.402

4-State Micromap 3.703 0.125 0.039 50.896 17.223
Tree 0.346 0.004 0.007 2.279 1.446
Vulkan (FT/FB) 3.777 0.130 0.041 51.962 17.620
Bitmask 0.375 0.640 4.000 10.852 28.801

N/A Texture 1.500 2.558 16.000 43.399 115.195
N/A Vertex Data 1.258 1.315 52.706 51.910 422.197
N/A Triangle Index 0.133 0.082 5.167 1.923 35.083
N/A Micromap/Tree Metadata 0.029 0.001 0.000 0.376 0.128

6 DISCUSSION
In this section we discuss the implications of our findings and attempt to interpret them.

6.1 Frame-time
Performance-wise, the first notable result is that there appear to be a small frametime improvement
between a micromap created with the fast-build versus one with the fast-trace flag. However,
the memory footprint is the same in both cases. Thus, it is likely that at this date the Nvidia driver
only implement a single type of opacity micromap, but have a slightly more optimized access
algorithm for the fast-trace case.

Further, even without official micromaps, we were able to detect a substantial improvement: Up
to 16 % lower frame-time compared to using alpha masks directly. However, with only software
emulation, we found a number of cases where using micromaps would instead increase the frame-
time by up to 30 %. It seems as this is the primary case where the RTX 40-series significantly improve
matters: Using the official micromap methods the worst recorded frame-time is only increased by
2 % and the best recorded one reduces it by 29 %. However, we also want to highlight the results
from figure 6, which clearly shows a case where not using micromaps seems preferable if an RTX
40-series card is not available. However, we again want to note that the difference between all
methods is very small: Only around 0.15ms.

Moreover, there appears to be only an extremely small improvement to using a bitmask instead
of a real texture: Presumably the bandwidth cost from loading the vertex data offsets most of the
potential gains. Then again, it would be interesting to see if compressing such a map similar to the
approach suggested by [Fenney and Ozkan 2023] would improve matters.

Lastly, accessing values from the tree compression is comparable to the other methods for
micromaps of subdivision levels 3 or 4 as seen in figures 7 and 8. This also appears to be the more
reasonable sizes for the scenes tested in this work, as can be seen among the micromap samples in
the supplemental material. At higher levels however, it is arguably too slow to be of practical use,
at least in its current form. This is likely caused by the bitscan function in algorithm 3: Each time
the right-most child is accessed, all intervening subtrees for all other children must be scanned, the
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number of which roughly quadruples for each subdivision level. However, improvements to these
types of data structures that use a bit more memory (about 26.5 % more) to ensure that the data can
still be accessed in an efficient manner already exist [Gog et al. 2014]. Investigating these options
and finding a structure with a better trade-off seems like a worthwhile endeavor, and even if these
structures cannot improve the access times, the tree structure would still be useful as a storage
format, particularly for high subdivision levels.

6.2 Compression
The tree method presented in this work is able to compress the opacity micromap data extremely
well: Typically down to between 45 and 15 % of the original size, but in some extreme cases, such
as for the New Sponza scene [2022] at 12 subdivision levels, to less than 1 % the original size, or by
110 times. A trend we expect to continue at higher subdivision levels.

However, while the compression is good in terms of memory footprint, the same is not neces-
sarily true for the memory bandwidth. Similar to other compression methods such as Huffman
coding [Huffman 1952], a potentially large portion of memory may need to be decoded before
the sought value is found, as is visualized in figure 9. This is also a notable deviation from the
recommendations for texture compression given by [Beers et al. 1996] and the most important
aspect that needs to be improved with a different succinct structure.

Table 3. Frametimes in milliseconds (ms) for all methods averaged over all camera poses in a scene. All
micromap based methods are using subdivision level 6. See figures 7 and 8 for a per-level breakdown.

Platform Mode Method Sponza Ecosys New Sponza San Miguel Landscape

RTX 4080 2-State Micromap 4.6 7.5 2.1 7.5 16.1
Tree 9.8 13.9 33.3 19.2 36.5
Vulkan (FT) 4.5 7.3 1.3 7.0 13.9
Vulkan (FB) 4.6 7.4 1.4 7.0 14.2
Bitmask 4.6 8.1 3.5 7.7 17.8

4-State Micromap 4.6 7.5 3.3 7.9 16.9
Tree 16.2 15.6 68.7 29.8 56.9
Vulkan (FT) 4.6 7.4 2.7 7.3 14.5
Vulkan (FB) 4.7 7.5 2.9 7.4 15.0
Bitmask 4.7 8.2 3.8 7.9 18.5

N/A Texture 4.6 8.2 3.7 8.0 18.5
RTX 3080 2-State Micromap 7.6 13.3 3.8 15.0 30.7

Tree 15.8 23.4 52.3 34.0 62.3
Vulkan (FT) 7.6 13.6 3.6 14.8 29.9
Vulkan (FB) 7.7 13.9 4.0 15.1 31.1
Bitmask 7.7 14.3 7.2 15.5 34.2

4-State Micromap 7.7 13.4 6.6 15.6 32.0
Tree 25.5 26.3 108.6 50.4 94.3
Vulkan (FT) 7.8 13.7 6.4 15.4 31.1
Vulkan (FB) 7.8 14.0 6.8 15.7 32.5
Bitmask 7.7 14.1 7.0 15.7 34.0

N/A Texture 7.8 14.2 7.4 15.8 34.4
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       RTX 3080           RTX 4080    

2-State Renders 4-State Render

Fig. 6. Frametime plots for subdivision levels 1 to 12 when rendering a single twig from the New Sponza
scene [2022]. Note that each 4-state methods yield the same render, whereas the 2-state methods is
different for each one, with only subdivision 1, 3, 5, 7 and 9 shown here. Be aware of the Y-axis scale: The
difference between each method is very small practice.

6.2.1 Degenerate Cases. The tree compression algorithm seems to be good in the presented scenes,
but there are a number of cases that cannot be compressed with this method. E.g., a micromap
that always alternates between the micromap states will create a succinct tree that requires more
memory than the original micromap, as depicted in figure 10. Such cases could be handled by
extending the encoding to sub-trees rather than just leaf-nodes but as these cases are exceedingly
rare in real content this may not be necessary in practice.

6.3 Comparing Micromaps to Textures
At first glance micromaps may appear to simply be a specialized kind of image texture. However,
this is arguably not true, especially not for micromaps generated from alpha mapped foliage.
Those kinds of micromaps are strongly tied to both the texture and the (uv) coordinates they were
generated from. As such, they are more similar to the textures originally envisioned by [Catmull
1974]. Further, a cursory analysis of our chosen scenes quickly reveal that scenes that only use a
single triangle or quad to represent foliage are exceedingly rare. As an example, figure 11 depicts
a texture atlas from the CryTek Sponza scene [2011] with all unique triangle texture coordinates
overlaid on top of it. This is a representative view of what can happen in practice:
• In some cases, we have a well-structured grid of coordinates, in others,
• we have many overlapping and crossing edges due to the coordinates being slightly mis-

aligned.
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Sponza Ecosys New Sponza

San Miguel Landscape Legend

Fig. 7. Plots over how the average frametimes changes for increasing subdivision levels on a RTX 4080.

In such cases, each triangle may create unique micromaps despite sharing a common texture and
may consequently increase the acceleration structure bandwidth usage rather than reduce it.

Sponza Ecosys New Sponza

San Miguel Landscape Legend

Fig. 8. Plots over how the average frame-times changes for increasing subdivision levels on a RTX 3080.
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0 0

3 3 1 1 0 0 0

3 3 1 1

Fig. 9. Visualization of the number of bits of the micromap tree that has to be read by an incoming ray before
an opacity value is found. Here shown in two scenes with 2-state micromaps at levels 4 and 9 along with a
schematic view over how these asymmetric read patterns arise when attempting to read the right-most tree
nodes.

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Fig. 10. Example degenerate case for the succinct tree compression: Instead of actually reducing the number
of nodes, it is forced to add 5 internal ones.

Further, in more modern scenes such as in San Miguel [2010] and Landscape [2016], leaves and
branches are often modeled individually and split into many segments to allow artists to give
them more depth as seen in figure 12. In these cases, micromaps work well, and relatively small
subdivision levels can be used as only small parts of the mesh cover partially-transparent regions.
However, in theses cases it is important to use the special triangle indices (see Section 3.1.2) to
avoid having to explicitly represent all triangles, most of which will be fully-opaque.

7 FUTUREWORK
The micromap extensions are currently limited in scope but thanks to the extensible nature of the
modern graphics APIs, it will be straight-forward to extend them in the future. The concept itself
may even extend beyond these APIs:

The indexing algorithm (4) generalizes in multiple aspects: To other dimensions, shapes and
subdivision levels. Investigating this further could lead to a number of interesting applications.

The tree accessing algorithm (3) only considered software implementations. As such, investigating
the costs and benefits of these algorithms when implemented in hardware remains open, and while
the presented version probably does not translate well into hardware, other uses of succinct data
structures may be more amenable to this.

In regard to the extension itself: The current 2-state mode is limited to the fully-opaque or
fully-transparent values. Adding one or more 1-bit modes to the opacity micromap extension
that replace either of these values with the unknown-opaque or unknown-transparent could be
an interesting way to further reduce the memory footprint. We plan to investigate the potential
gains from such modes in the future.
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Fig. 11. A representative texture atlas of various plants from the CryTek Sponza [2011] scene with all uniquely
unwrapped texture coordinates overlaid on top, along with a histogram showing how many triangles overlap
each pixel.

Fig. 12. Two representative textures depicting how modern scenes model leaves with a single texture and a
highly tessellated grid to allow artists to give the leaves more depth.

Opacity micromaps is not the only available type: As mentioned in Section 3, displacement
micromaps are already available on some hardware and other types are under development [Bickford
2023]. Some aspects of the presented tree encoding seem to extend to these types but more research
is needed in this regard. Further, the algorithms presented in this paper only considered lossless
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encoding. Allowing lossy encoding of micromap values would open up many new avenues of
research.

For the sake of brevity, the subject of constructing micromaps were not considered in this paper.
Nvidia has published a framework for constructing them either during rendering or as a part of the
asset preparation pipeline [GameWorks 2022]. Further, there is ongoing work to make similar tools
available in Blender [Waldemarson 2023]. However, the aspect of how to create micromaps in an
efficient and continuous manner is arguably still worth investigating.

Finally, the use-case for micromaps, and particularly opacity micromaps, is rather limited at the
time of writing. Finding new and clever use-cases for them could be very interesting.

8 CONCLUSION
In this paper we introduced several novel algorithms related to the compression of micromaps
by converting them to succinct 4-way trees, reducing their memory footprint by up to 110 times
in a number of representative scenes that use alpha mapped foliage extensively while remaining
competitive at reasonable subdivision levels, but additional work is needed for this method to be
practical in a high performance context.

Further, we have evaluated the potential performance gain from using the official Vulkan® and
DirectX® opacity micromaps extension applied to alpha mapped geometry, confirming that the
feature can provide an increase in frametime by at most 29 % when used in the so-called 4-state
mode. Further, we have documented several important considerations regarding the use of 2-state
micromaps that may be important for designers to be aware of. Moreover, we have introduced an
alternative to the reference barycentric-to-index-algorithm that may be easier to understand.
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A BARYCENTRIC TO MICROMAP INDEX ALGORITHM DETAILS
The algorithm described in Section 4.3 works as follows:

(1) Split the base triangle into 4 equal sized sub-triangles using the midpoint of each edge.
(2) Then, using the vertex to edge mid-point relations;

E0 =<01 +<02 −<12

E1 =<01 +<12 −<02

E2 =<02 +<12 −<01

and the typical formula for barycentric coordinates (% = FE0 + DE1 + EE2), it is possible to
derive the following relations to update the D, E,F coordinates for each of the sub-triangles
!,", ',) :

! B


D! = D − E −F
E! = 2E

F! = 2F

" B


D" = D + E −F
E" = E +F − D
F" = D +F − E

' B


D' = 2D

E' = E − D −F
F' = 2F

) B


D) = 2D

E) = 2E

F) = F − D − E

(3) Note that the indexing and ordering of the updated coordinates are significant to handle
rounding and winding changes for the top and middle triangles as the reference algorithm
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rounds globally away from theF coordinate. Thus, the rounding direction has to be main-
tained as we recurse and change winding, requiring special handling for the top and middle
triangles as follows:
• Each time we recurse into the top triangle, flip the local index of the left and right subtrian-

gles.
• Each time we recurse into the middle triangle, round D and E tie-breaks to the middle rather

than the right subtriangle.
See figures 13 and 2 for examples on how this works in practice.

Fig. 13. Description of how a triangle that has already been subdivided once into subtriangles !,", ',) is
further subdivided. Note in particular how the DE coordinates, indices, and rounding change for each of the
subtriangles.
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