
PBRT: Create your own
Importers and Exporters
Gustaf Waldemarson

Arm & Lund University

PBRT: Create your own
Importers and Exporters
Gustaf Waldemarson

Arm & Lund University

20
25

-0
1-
11

Ah, I think we are just about ready to start!

Thanks everyone for coming!

(And it’s nice to see so many people here again this year!).

Though, I should warn you all: This will be a mostly technical talk. As such, I’m afraid that the
supply of neat renders and images may run a bit sparse at times, but I hope you will all learn
something from this at least!

First though! I noticed that there is a minor miss-print in the schedule pamphlet: This talk is
intended as a 50-minute talk, so if you intend to also catch the talks at 16.30, you should know
that I will run over that particular time-point!

https://gustafwaldemarson.com/
https://gustafwaldemarson.com/

Who am I?
• Industrial PhD Student at the Lund University Graphics Group
• Software Engineer at Arm

https://gustafwaldemarson.com
1/60

Who am I?
• Industrial PhD Student at the Lund University Graphics Group
• Software Engineer at Arm

https://gustafwaldemarson.com20
25

-0
1-
11

Who am I?

And interestingly, something similar happened last year, since this is actually my second year of
presenting at BlenderCon. Still, I think some kind of self-introduction is in order here: My name
is Gustaf Waldemarson, a software engineer at Arm, where I have been helping out with various
bits and bobs of the Mali graphics driver stack, and particularly the parts related to hardware
ray-tracing.

And to top it all off, I’m also a so-called Industrial PhD student at Lund University in Sweden
where I also work with various ray-tracing related topics, some of which may make a small ap-
pearance later in this talk.

All that said, I am obliged to say that I do not represent Arm during this event, nor is the content
sponsored by Arm, and any views or opinions herein are entirely my own.

And, in case you’re wondering, I am also not affiliated with the people behind PBRT in any way.
It just so happens that I’ve used it quite a bit over the years.

https://gustafwaldemarson.com
https://gustafwaldemarson.com

Agenda

1. What is PBRT?
– Why use it?

2. The Importer
– Earlier Work

3. Proxy Objects and Renderer Settings

4. The Exporter

2/60

Agenda

1. What is PBRT?
– Why use it?

2. The Importer
– Earlier Work

3. Proxy Objects and Renderer Settings

4. The Exporter

20
25

-0
1-
11

Agenda

But with that, let’s jump into the meat of things: In this talk I will primarily discuss three things:

1. PBRT, the rendering framework and file format,

2. How to create a custom importer in Blender, and,

3. How to create a custom exporter.

I will also briefly touch upon some aspects about custom renderers, but more on that in a bit.

First though, I hope that I haven’t lured anyone here with the hopes of learning about PBR
textures and techniques. While the letters are the same, and actually stand for the same thing,
that is actually a different topic that is out-of-scope for this talk!

PBRT:
Physically Based Rendering
From Theory to Implementation

PBRT:
Physically Based Rendering
From Theory to Implementation

20
25

-0
1-
11 PBRT:

Physically Based Rendering
From Theory to Implementation

Blender Renderers

Blender
Cycles Unidirectional volumetric path tracer

Eevee Real-time rasterization based rendering engine

Workbench Real-time preview rendering engine

3/60

Blender Renderers

Blender
Cycles Unidirectional volumetric path tracer

Eevee Real-time rasterization based rendering engine

Workbench Real-time preview rendering engine

20
25

-0
1-
11 PBRT:

Physically Based Rendering
From Theory to Implementation

Blender Renderers

First though, let us briefly summarize what we already have in Blender in terms of rendering
engines. By default, we have:

• Cycles, the unidirectional volumetric path tracer, that we use to create our nicer images,
and,

• Eevee, the real-time, raster-based engine, for a bit faster rendering, and, of course:

• The workbench renderer, which we typically only use for previewing our work.

I must say, that I don’t really know a lot about the internals of these renderers, but from what
I’ve seen so far, both here and elsewhere, they do appear to be very flexible and feature-full
frameworks.

One could also argue, that some features, such as view layers with clever compositingmake these
count as multiple different rendering engines. Still, sometimes it is desirably to use something
different, something which may be more useful for some specialized task.

PBRT
Physically Based Rendering – From Theory to Implementation

https://pbr-book.org/3ed-2018/contents
https://pbr-book.org/4ed/contents

4/60

PBRT
Physically Based Rendering – From Theory to Implementation

https://pbr-book.org/3ed-2018/contents
https://pbr-book.org/4ed/contents20

25
-0
1-
11 PBRT:

Physically Based Rendering
From Theory to Implementation

PBRT

And this is kind of where PBRT comes in. In full, it stands for, Physically Based Rendering, from
Theory to Implementation, and it is both an award-winning text-book and a research and edu-
cational framework for developing new, or improving existing rendering algorithms.

It is also open-source under a liberal license, and as such it has been quite influential over the last
few decades. And in the last two editions have even been made freely available online, which
you can find them through these links, making them an excellent place for learning about all
things rendering.

https://pbr-book.org/3ed-2018/contents
https://pbr-book.org/4ed/contents
https://pbr-book.org/3ed-2018/contents
https://pbr-book.org/4ed/contents

PBRT – The Renderer(s)

PBRT-v2 PBRT-v3 PBRT-v4

• Ambient Occlusion
• Instant Global Illumination
• Irradiance Cache
• Path Tracer
• Light Probes
• Whitted RT
• . . .

• Bidirectional Path Tracing
• Direct Lighting
• Whitted RT
• Path Tracing
• Volumetric Path Tracing
• Metropolis Light Transport
• Stochastic Progressive

Photon Mapping
• . . .

• Bidirectional Path Tracing
• Direct Lighting
• Whitted RT
• (Volumetric) Path Tracing
• Metropolis Light Transport
• Light Path Tracing
• Simple (Volumetric) Path

Tracing
• Stochastic Progressive

Photon Mapping
• . . .

5/60

PBRT – The Renderer(s)

PBRT-v2 PBRT-v3 PBRT-v4

• Ambient Occlusion
• Instant Global Illumination
• Irradiance Cache
• Path Tracer
• Light Probes
• Whitted RT
• . . .

• Bidirectional Path Tracing
• Direct Lighting
• Whitted RT
• Path Tracing
• Volumetric Path Tracing
• Metropolis Light Transport
• Stochastic Progressive

Photon Mapping
• . . .

• Bidirectional Path Tracing
• Direct Lighting
• Whitted RT
• (Volumetric) Path Tracing
• Metropolis Light Transport
• Light Path Tracing
• Simple (Volumetric) Path

Tracing
• Stochastic Progressive

Photon Mapping
• . . .20

25
-0
1-
11 PBRT:

Physically Based Rendering
From Theory to Implementation

PBRT – The Renderer(s)

As for the renderers that already exist in PBRT, they are plentiful, to say the least, as I hope these
list illustrates, even if it is a bit disingenuous: As I said before, with composition we can easily get
some things, such Ambient Occlusion rendering in cycles and Eevee. Here though, that would
correspond to a different renderer.

(Note that as this is in part a research framework, the editions have consequently followed
various trends in computer graphics research, hence the varying availability of rendering algo-
rithms.)

PBRT – Why?
Photon Mapping Example

PBRTv3 - SPPM Cycles

Model courtesy of Simon Wendsche
6/60

PBRT – Why?
Photon Mapping Example

PBRTv3 - SPPM Cycles

Model courtesy of Simon Wendsche

20
25

-0
1-
11 PBRT:

Physically Based Rendering
From Theory to Implementation

PBRT – Why?

And just to show you an example: This is one such casewhere it makes sense to have a specialized
renderer at hand, as scenes with a lot of caustics is still an extremely challenging thing to render:

To the left, I rendered this caustics-heavy example scene with the Stochastic Progressive Photon
Mapping renderer in PBRT and to the right I did my best to recreate the same kind of caustics
in Cycles, but even after digging through lots of renderings setting I just didn’t manage to get
much of anything, as I hope you can see.

Although, I fully expect that this could be significantly improved by someone who knows Cycles
better than I do. Still, the fact remains that if you know what your scene is going to contain, it
sometimes may make more sense to choose a renderer that is more suited for that task.

HBO Miniseries: Chernobyl
Cherenkov Radiation

– Images from “Chernobyl” Episode 1-2 © HBO

7/60

HBO Miniseries: Chernobyl
Cherenkov Radiation

– Images from “Chernobyl” Episode 1-2 © HBO

20
25

-0
1-
11 PBRT:

Physically Based Rendering
From Theory to Implementation

HBO Miniseries: Chernobyl

But, as I said, PBRT is also an ideal framework for developing new rendering algorithms. So,
way-back-when, in 2019, HBO aired their excellent Chernobyl miniseries, and in the first few
episodes, some of the eerie lighting effects where attributed to Cherenkov Radiation, which
caught my interest. So, I did a bit of research on that topic.

Nuclear Reactors

Reed Research Reactor

©
A
rg
o
n
n
e
N
at
io
n
al

La
b
o
ra
to
ry

C
C
-B
Y
-S
A
-2
.0

Advanced Test Reactor

8/60

Nuclear Reactors

Reed Research Reactor

©
A
rg

o
n
n
e
N
at
io
n
al

La
b
o
ra
to

ry
C
C
-B
Y
-S
A
-2
.0

Advanced Test Reactor20
25

-0
1-
11 PBRT:

Physically Based Rendering
From Theory to Implementation

Nuclear Reactors

Typically, it is a phenomenon that can be seen in the proximity of active nuclear reactors, as you
can see in these photographs.

But, when I looked for some, let’s say, neater renderings of the effect in a more controlled
setting, I was unable to find much.

Superluminal Photon Mapping
Cherenkov Radiation

9/60

Superluminal Photon Mapping
Cherenkov Radiation

20
25

-0
1-
11 PBRT:

Physically Based Rendering
From Theory to Implementation

Superluminal Photon Mapping

And this video simulating a single particle in 2D was among the few things I found, showing
how photons are emitted in a cone from the path of a charged particle.

While it is neat, and describes the phenomenon quite well, it was not exactly the neat looking
rendering I was after.

That got me thinking: Could I modify the photon mapping algorithm somewhat to generate
something similar, but in 3D, and with more accurate lighting?

Superluminal Photon Mapping

10/60

Superluminal Photon Mapping

20
25

-0
1-
11 PBRT:

Physically Based Rendering
From Theory to Implementation

Superluminal Photon Mapping

To that end, I created a simple variation of the so-called Cornell Box like this, letting a charged
particle enter the scene along the red arrow, which should then, in theory, cast light in a cone
like this.

And, after a bit of implementation and experimentation inmy homegrown renderer, I got some-
thing that looked like this. (Next Slide)

Doesn’t look like much, but it was a good proof of concept.

So, after a bit of porting work to PBRT, I was able to get a lot of features almost for free:

Next Slide

Superluminal Photon Mapping

10/60

Superluminal Photon Mapping

20
25

-0
1-
11 PBRT:

Physically Based Rendering
From Theory to Implementation

Superluminal Photon Mapping

To that end, I created a simple variation of the so-called Cornell Box like this, letting a charged
particle enter the scene along the red arrow, which should then, in theory, cast light in a cone
like this.

And, after a bit of implementation and experimentation inmy homegrown renderer, I got some-
thing that looked like this. (Next Slide)

Doesn’t look like much, but it was a good proof of concept.

So, after a bit of porting work to PBRT, I was able to get a lot of features almost for free:

Next Slide

Superluminal Photon Mapping

11/60

Superluminal Photon Mapping

20
25

-0
1-
11 PBRT:

Physically Based Rendering
From Theory to Implementation

Superluminal Photon Mapping

Which gave me a rendering that looked like this, which is much better than what I could easily
create in my own experimental framework.

Basically, in PBRT I got a lot of extra features for free, such as accurate handling of spectral
properties, which really were necessary for an effect like this.

Superluminal Photon Mapping

1.251.31.41.51.6

Gustaf Waldemarson and Michael Doggett. “Photon Mapping Superluminal Particles”. In: Eurographics 2020 - Short
Papers. Ed. by Alexander Wilkie and Francesco Banterle. The Eurographics Association, 2020. ISBN: 978-3-03868-101-4.
DOI: 10.2312/egs.20201004

12/60

Superluminal Photon Mapping

1.251.31.41.51.6

Gustaf Waldemarson and Michael Doggett. “Photon Mapping Superluminal Particles”. In: Eurographics 2020 - Short
Papers. Ed. by Alexander Wilkie and Francesco Banterle. The Eurographics Association, 2020. ISBN: 978-3-03868-101-4.
DOI: 10.2312/egs.2020100420

25
-0
1-
11 PBRT:

Physically Based Rendering
From Theory to Implementation

Superluminal Photon Mapping

And, this phenomenon depends quite a lot on the density of the material the particle passes
through, so to see how that would affect things, we created another scene with rods of various
index-of-refraction, giving us a rendering like this.

This, we wrote up in a paper a number of years ago now, so if you are interested, you can find
more details down here, or on my personal web-page along with the code for it.

https://doi.org/10.2312/egs.20201004
https://doi.org/10.2312/egs.20201004

20
25

-0
1-
11 PBRT:

Physically Based Rendering
From Theory to Implementation

But with that, I hope I have given you a sufficient motivation why we may want to use different
framework: Either to improve some specific effect, or, to make it easier to try out things during
research.

Now though, it’s high time to start talking about how we can use Blender to help with this
matter by creating an importer to get things in, and exporters to move Blender objects to our
renderer of choice!

So today, in keeping with this years BlenderCon theme, we are taking the first steps in “Making
Blender Love PBRT!”

The Importer

The Importer

20
25

-0
1-
11 The Importer

The Importer

.pbrt Importer

14/60

The Importer

.pbrt Importer

20
25

-0
1-
11 The Importer

The Importer

So, I want to start with talking about the importer, since it is sometimes desirable to be back-
wards compatible to some degree, and thus being able to import existing scenes directly into
Blender could be a huge boon.

Furthermore, for PBRT in particular, it is rumored that it has been used as the base for creating
various production renderers (LuxCoreRenderer was one at some point). So getting some of
those scenes into Blender for comparison could be very interesting.

The Format
The Importer — sphere-ex.pbrt

LookAt 0 5 8 0 .8 0 0 1 0
Film "image"

"integer xresolution" [400] "integer yresolution" [400]
"string filename" "sphere-ex.exr"

Camera "perspective" "float fov" [22]
Integrator "path"
WorldBegin

AttributeBegin
CoordSysTransform "camera"
LightSource "point" "color I" [300 300 300]

AttributeEnd
Include "mesh.pbrt"
Include "sphere.pbrt.gz"

WorldEnd

15/60

The Format
The Importer — sphere-ex.pbrt

LookAt 0 5 8 0 .8 0 0 1 0
Film "image"

"integer xresolution" [400] "integer yresolution" [400]
"string filename" "sphere-ex.exr"

Camera "perspective" "float fov" [22]
Integrator "path"
WorldBegin

AttributeBegin
CoordSysTransform "camera"
LightSource "point" "color I" [300 300 300]

AttributeEnd
Include "mesh.pbrt"
Include "sphere.pbrt.gz"

WorldEnd20
25

-0
1-
11 The Importer

The Format

But first, just so we are all on the same page, let us take a look at the format of a PBRT file...

In short, you can think of it is being separated in two parts: In the first of which, the top-portion
up here, we describe how we want to render the image, setting various parameters about how
the output image should be stored, where the camera should be located, and so forth.

After that, we describe the contents of the scene, or world itself, placing light-sources and ob-
jects with the help of various transform directives as well as dressing them up with materials.

It is also possible to Include other files, which may also be compressed using gzip compression
as you can see from the file-extension of the last file down here.

The Format
The Importer — mesh.pbrt / sphere.pbrt.gz

mesh.pbrt
AttributeBegin

Material "matte" "color Kd" [.8 .8 .8]
Shape "trianglemesh" "integer indices" [0 2 1 2 0 3]

"point P" [-10 0 -10 10 0 -10 10 0 10 -10 0 10]
AttributeEnd

sphere.pbrt.gz
AttributeBegin

Translate 0 1 0
Rotate 60 1 1 1
Material "uber" "color Kd" [.8 .0 .0] "color Ks" [.05 .05 .05]
Shape "sphere"

AttributeEnd

16/60

The Format
The Importer — mesh.pbrt / sphere.pbrt.gz

mesh.pbrt
AttributeBegin

Material "matte" "color Kd" [.8 .8 .8]
Shape "trianglemesh" "integer indices" [0 2 1 2 0 3]

"point P" [-10 0 -10 10 0 -10 10 0 10 -10 0 10]
AttributeEnd

sphere.pbrt.gz
AttributeBegin

Translate 0 1 0
Rotate 60 1 1 1
Material "uber" "color Kd" [.8 .0 .0] "color Ks" [.05 .05 .05]
Shape "sphere"

AttributeEnd20
25

-0
1-
11 The Importer

The Format

And each of these separate files simply contains more statements of the same kind, as you can
see here with a description of the base-plane mesh and a slightly transformed red sphere.

And, once you run a scene like this through PBRT, you get an image that looks like this one up in
corner. Nothing too exciting, but a good starting point to get an idea of what the format looks
like.

Earlier Work
The Importer

• https://github.com/mxpv/pbrt4 (Rust)
• https://github.com/vilya/minipbrt (C++)
• https://github.com/ingowald/pbrt-parser (C++)

17/60

Earlier Work
The Importer

• https://github.com/mxpv/pbrt4 (Rust)
• https://github.com/vilya/minipbrt (C++)
• https://github.com/ingowald/pbrt-parser (C++)

20
25

-0
1-
11 The Importer

Earlier Work

To my knowledge, there is no PBRT importer out there for Blender, but there are a few libraries
out there for parsing the file format, which makes sense, since it is a relatively easy format to
work with. I wouldn’t be surprised if there are many more in-house parsers out here; as even I
have had my own C++ parser for it since quite a few years back now.

It probably would be possible to use one of these libraries with Blender, but doing so would
complicate matters quite a bit as we would need to integrate and distribute third-party binary
libraries, which felt rather tough, and would make a quite different talk. So here, everything
will be done in plain Python.

This means it probably won’t win any performance drag-races, but for what is probably only
going to be a one-time cost for importing the file into Blender, being more general and portable
feels like the right choice.

https://github.com/mxpv/pbrt4
https://github.com/vilya/minipbrt
https://github.com/ingowald/pbrt-parser
https://github.com/mxpv/pbrt4
https://github.com/vilya/minipbrt
https://github.com/ingowald/pbrt-parser

An Earlier Attempt: PBRT→ glTF→ Blender
The Importer

.pbrt

18/60

An Earlier Attempt: PBRT→ glTF→ Blender
The Importer

.pbrt

20
25

-0
1-
11 The Importer

An Earlier Attempt: PBRT→ glTF→ Blender

As I mentioned, I technically already had a PBRT parser, and I even used it quite a bit this year
to generate test data for a different project by first converting the PBRT format to glTF before
using that importer to bring it into Blender.

Issues
.pbrt

• Most PBRT objects cannot be represented
• We lose the material and texture graphs

19/60

Issues
.pbrt

• Most PBRT objects cannot be represented
• We lose the material and texture graphs

20
25

-0
1-
11 The Importer

Issues

This works, but is a bit problematic for a few reasons:

Firstly, PBRT has quite a number of primitives, most of which are not supported by glTF, but
most crucially, while glTF has a great material model, the one available in PBRT is substantially
deeper, with a full graph to describe mixing of both materials and textures. As such, in my
converter I was forced to adjust all materials or simply drop that information.

Luckily, for my earlier project I was only interested in ambient occlusion rendering, so I did not
actually have to care about this loss. However, going forward it is something I am going to need,
hence this effort!

(Obviously, it should be possible to add quite a bit of this as custom glTF extensions, but as
there was so many things that were needed, that felt like the wrong thing to do!)

The Importer
What do we need to do?

.pbrt Importer

• An Import Operator1

• An Import Panel2 (optional)
• An Import Menu Entry3 (optional)

1https://docs.blender.org/manual/en/latest/interface/operators.html
2https://docs.blender.org/api/current/bpy.types.Panel.html
3https://docs.blender.org/api/current/bpy.types.Menu.html

20/60

The Importer
What do we need to do?

.pbrt Importer

• An Import Operator1

• An Import Panel2 (optional)
• An Import Menu Entry3 (optional)

1https://docs.blender.org/manual/en/latest/interface/operators.html
2https://docs.blender.org/api/current/bpy.types.Panel.html
3https://docs.blender.org/api/current/bpy.types.Menu.html20

25
-0
1-
11 The Importer

The Importer

So, what do we actually need to do from Blenders point of view?

In short, we only have to create a so-called Operator, i.e., something Blender can identify as
modifying something in the scene.

And of course, there are various flavors of these, but we want to create Import and Export
operators.

But, for conveniencewe probably also want to add some extra things, such as a panel for modify-
ing some properties of the import and a menu entry to start the process from the user interface.

https://docs.blender.org/manual/en/latest/interface/operators.html
https://docs.blender.org/api/current/bpy.types.Panel.html
https://docs.blender.org/api/current/bpy.types.Menu.html
https://docs.blender.org/manual/en/latest/interface/operators.html
https://docs.blender.org/api/current/bpy.types.Panel.html
https://docs.blender.org/api/current/bpy.types.Menu.html

The Operator
The Importer

.pbrt Importer

class ImportPBRT(bpy.types.Operator, bpy_extras.io_utils.ImportHelper):
"""Blender Importer class for PBRT scenes."""
... Config variables...

def draw(self, context):
"""Specify how to draw the Blender panel UI."""

def execute(self, context):
"""Execute the PBRT import process."""

21/60

The Operator
The Importer

.pbrt Importer

class ImportPBRT(bpy.types.Operator, bpy_extras.io_utils.ImportHelper):
"""Blender Importer class for PBRT scenes."""
... Config variables...

def draw(self, context):
"""Specify how to draw the Blender panel UI."""

def execute(self, context):
"""Execute the PBRT import process."""

20
25

-0
1-
11 The Importer

The Operator

Startingwith themandatory: To create an import operator, we need to create a class that inherits
from the Blender bpy.types.Operator class, and in our case, we also want to inherit from
the ImportHelper, since that will add a couple of conveniences, such as helping with the file-
selection process.

The Operator
The Importer – Configuration Variables

.pbrt Importer

class ImportPBRT(bpy.types.Operator, bpy_extras.io_utils.ImportHelper):
"""Blender Importer class for PBRT scenes."""
bl_idname = "import_scene.pbrt"
bl_label = "Import PBRT"
bl_options = {"REGISTER", "UNDO"}

filter_glob: StringProperty(default="*.pbrt;*.pbrt.gz")
files: CollectionProperty(name="File Path",

type=bpy.types.OperatorFileListElement)
mode: EnumProperty()
parse_only: BoolProperty()

22/60

The Operator
The Importer – Configuration Variables

.pbrt Importer

class ImportPBRT(bpy.types.Operator, bpy_extras.io_utils.ImportHelper):
"""Blender Importer class for PBRT scenes."""
bl_idname = "import_scene.pbrt"
bl_label = "Import PBRT"
bl_options = {"REGISTER", "UNDO"}

filter_glob: StringProperty(default="*.pbrt;*.pbrt.gz")
files: CollectionProperty(name="File Path",

type=bpy.types.OperatorFileListElement)
mode: EnumProperty()
parse_only: BoolProperty()

20
25

-0
1-
11 The Importer

The Operator

As with a lot of Blender classes, we need a set of configuration variables and properties for it to
function.

The Operator
The Importer – Configuration Variables

.pbrt Importer

class ImportPBRT(bpy.types.Operator, bpy_extras.io_utils.ImportHelper):
"""Blender Importer class for PBRT scenes."""
bl_idname = "import_scene.pbrt"
bl_label = "Import PBRT"
bl_options = {"REGISTER", "UNDO"}

filter_glob: StringProperty(default="*.pbrt;*.pbrt.gz")
files: CollectionProperty(name="File Path",

type=bpy.types.OperatorFileListElement)
mode: EnumProperty()
parse_only: BoolProperty()

23/60

The Operator
The Importer – Configuration Variables

.pbrt Importer

class ImportPBRT(bpy.types.Operator, bpy_extras.io_utils.ImportHelper):
"""Blender Importer class for PBRT scenes."""
bl_idname = "import_scene.pbrt"
bl_label = "Import PBRT"
bl_options = {"REGISTER", "UNDO"}

filter_glob: StringProperty(default="*.pbrt;*.pbrt.gz")
files: CollectionProperty(name="File Path",

type=bpy.types.OperatorFileListElement)
mode: EnumProperty()
parse_only: BoolProperty()

20
25

-0
1-
11 The Importer

The Operator

In this case, I would say that the most important ones would be these ones:

• ID-name, That give the operator a function to be called by, and,

• The files property, which will contain the files to be imported when the operator runs.

Any other properties that you would like, such as which parsing mode, etc, can also be added
here.

The Panel
The Importer

def draw(self, context):
"""Specify how to draw the Blender panel UI."""
sfile = context.space_data
operator = sfile.active_operator
self.layout.use_property_split = True
self.layout.use_property_decorate = False
self.layout.prop(operator, "mode")
self.layout.prop(operator, "parse_only")

24/60

The Panel
The Importer

def draw(self, context):
"""Specify how to draw the Blender panel UI."""
sfile = context.space_data
operator = sfile.active_operator
self.layout.use_property_split = True
self.layout.use_property_decorate = False
self.layout.prop(operator, "mode")
self.layout.prop(operator, "parse_only")

20
25

-0
1-
11 The Importer

The Panel

As for the panel: We have two options:

• We can either create a draw method directly in the operator class, like this,

• Or create a separate class to specify how and where to place the panel.

Doing it like this would then give you these extra options that you can set in your file-picker.

The Panel in a Separate Class
The Exporter Panel

class PBRT_PT_export(bpy.types.Panel):
bl_space_type = "FILE_BROWSER"
bl_region_type = "TOOL_PROPS"
bl_label = ""
bl_parent_id = "FILE_PT_operator"
bl_options = {"HIDE_HEADER"}

@classmethod
def poll(cls, context):

sfile = context.space_data
operator = sfile.active_operator
return operator.bl_idname == "EXPORT_SCENE_OT_pbrt"

def draw(self, context):
...

25/60

The Panel in a Separate Class
The Exporter Panel

class PBRT_PT_export(bpy.types.Panel):
bl_space_type = "FILE_BROWSER"
bl_region_type = "TOOL_PROPS"
bl_label = ""
bl_parent_id = "FILE_PT_operator"
bl_options = {"HIDE_HEADER"}

@classmethod
def poll(cls, context):

sfile = context.space_data
operator = sfile.active_operator
return operator.bl_idname == "EXPORT_SCENE_OT_pbrt"

def draw(self, context):
...20

25
-0
1-
11 The Importer

The Panel in a Separate Class

Creating a panel class gives a bit more control, as shown here for the export operator. Although,
it is a bit redundant in this case: As far as I understand, the current default is to place the panel
in the FileBrowser. So this example simply places it in the default place, as sometimes, more
control is desired.

The Menu Entry
The Importer

def menu_func_import(self, context):
"""Function to run when executing the import menu item."""
self.layout.operator(ImportPBRT.bl_idname, text='PBRT (.pbrt)')

def register():
"""Register the addon with Blender."""
bpy.types.TOPBAR_MT_file_import.append(menu_func_import)

...

26/60

The Menu Entry
The Importer

def menu_func_import(self, context):
"""Function to run when executing the import menu item."""
self.layout.operator(ImportPBRT.bl_idname, text='PBRT (.pbrt)')

def register():
"""Register the addon with Blender."""
bpy.types.TOPBAR_MT_file_import.append(menu_func_import)

...

20
25

-0
1-
11 The Importer

The Menu Entry

As for the menu entry, It is actually one of the easier things to add:

When registering the extension, we simply append an operator to this Blender object, which is
called when we click the chosen menu entry.

Parsing
The Importer

.pbrt

Importer

Tokenizer Parser Importer
Tokens IR

27/60

Parsing
The Importer

.pbrt

Importer

Tokenizer Parser Importer
Tokens IR

20
25

-0
1-
11 The Importer

Parsing

Moving on to the actual importer: Here we actually start digging into the files themselves, and
for that, I typically break the importing into a couple of different steps.

The Operator
The Importer – execute()

.pbrt

Importer

Tokenizer Parser Importer
Tokens IR

def execute(self, context):
"""Execute the PBRT import process."""
settings = self.as_keywords()
Multiple files?
if self.files:

dirname = os.path.dirname(self.filepath)
for file in self.files:

self.unit_import(os.path.join(dirname, file.name), settings)
return {'FINISHED'}

else:
return self.unit_import(self.filepath, settings)

28/60

The Operator
The Importer – execute()

.pbrt

Importer

Tokenizer Parser Importer
Tokens IR

def execute(self, context):
"""Execute the PBRT import process."""
settings = self.as_keywords()
Multiple files?
if self.files:

dirname = os.path.dirname(self.filepath)
for file in self.files:

self.unit_import(os.path.join(dirname, file.name), settings)
return {'FINISHED'}

else:
return self.unit_import(self.filepath, settings)

20
25

-0
1-
11 The Importer

The Operator

The first thing we want to do is simply to ask Blender to start the process by implementing the
execute function.

Here, we do run into a bit of a caveat though: Blender will behave slightly differently depending
on if we only select one file, or whether we select several:

• For one file, the full path to it ends up in the filepath property.

• Otherwise, the basename for each file ends up in the files property list.

In either case though, we typically use the same parsing method for each file: called unit_im-
port in this case.

The Operator
The Importer – unit_import()

.pbrt

Importer

Tokenizer Parser Importer
Tokens IR

def unit_import(self, filename, import_settings):
"""Import a single PBRT file."""
try:

pbrt_settings, world = pbrt_parser(filename, import_settings)
importer(pbrt_settings, world, import_settings)
return {'FINISHED'}

except Exception as e:
traceback.print_exc()
print(f"Unexpected exception caught: {e}")
self.report({'ERROR'}, str(e.args[0]))
return {'CANCELLED'}

29/60

The Operator
The Importer – unit_import()

.pbrt

Importer

Tokenizer Parser Importer
Tokens IR

def unit_import(self, filename, import_settings):
"""Import a single PBRT file."""
try:

pbrt_settings, world = pbrt_parser(filename, import_settings)
importer(pbrt_settings, world, import_settings)
return {'FINISHED'}

except Exception as e:
traceback.print_exc()
print(f"Unexpected exception caught: {e}")
self.report({'ERROR'}, str(e.args[0]))
return {'CANCELLED'}

20
25

-0
1-
11 The Importer

The Operator

As for the singular import, it really only does two things: parse the file, and create Blender
objects from the intermediate representation.

I did however find that it was useful to create a catch-all exception handler here. Blender will
typically catch stray exception to avoid crashing the interface, but I kept losing the full stack-
trace anyhow. Thus, with this traceback call I ended up saving myself from a lot of debugging
time.

Tokenizer
The Importer

.pbrt

Importer

Tokenizer Parser Importer
Tokens IR

import shlex

class Tokenizer(shlex.shlex):
def __init__(self, file, name):

super().__init__(instream=file,
infile=name,
punctuation_chars="[]")

self.wordchars += "+"

30/60

Tokenizer
The Importer

.pbrt

Importer

Tokenizer Parser Importer
Tokens IR

import shlex

class Tokenizer(shlex.shlex):
def __init__(self, file, name):

super().__init__(instream=file,
infile=name,
punctuation_chars="[]")

self.wordchars += "+"

20
25

-0
1-
11 The Importer

Tokenizer

With that were inside the actual parsing infrastructure, starting with the Tokenizer. Typically,
I wouldn’t go into details about the parsing stuff, but I am particularly happy about how easy
Python makes this: You only really need 5 lines to get a complete one, depending on how you
want to count this, and this includes things such as error reporting and the ability to add new
sub-files to the token-stream, which we need for the Include statements!

This is of course powered by the built-in Python module: shlex, which is typically used for
parsing command-line arguments but also works really well for more general parsing tasks.

Parser
The Importer

.pbrt

Importer

Tokenizer Parser Importer
Tokens IR

def parse_setting(token):
"""Parse a token in the PBRT settings context."""
if token in ("Include", "Import"):

parse_include()
...
else:

raise ParseError(f"Unexpected token: '{token}'")

∼ 600 lines of Python

31/60

Parser
The Importer

.pbrt

Importer

Tokenizer Parser Importer
Tokens IR

def parse_setting(token):
"""Parse a token in the PBRT settings context."""
if token in ("Include", "Import"):

parse_include()
...
else:

raise ParseError(f"Unexpected token: '{token}'")

∼ 600 lines of Python

20
25

-0
1-
11 The Importer

Parser

Then, from the tokens the parser builds an intermediate representation, although, I hope I will
not disappoint too much, as I will omit basically everything of the parser itself.

Suffice to say, it is not much more than a bunch of functions with a lot of if-else statements to
handle all possible tokens and states that can be encountered in a file, totaling about 600 lines
Python. Not too bad for a parser that is able to parse all PBRT example scenes from all versions
of PBRT!

Intermediate Representation
The Importer

.pbrt

Importer

Tokenizer Parser Importer
Tokens IR

settings = { "animation": {} }
world = {

"area_lights": [],
"lights": [],
"shapes": [],
"instances": [],
"materials": [],
"textures": {},
"media": {},
"named_materials": {},
"named_objects": {},
"coordinate_systems": {},

}

32/60

Intermediate Representation
The Importer

.pbrt

Importer

Tokenizer Parser Importer
Tokens IR

settings = { "animation": {} }
world = {

"area_lights": [],
"lights": [],
"shapes": [],
"instances": [],
"materials": [],
"textures": {},
"media": {},
"named_materials": {},
"named_objects": {},
"coordinate_systems": {},

}20
25

-0
1-
11 The Importer

Intermediate Representation

When the parser is done the intermediate representation that looks something like this:

• Higher level objects, such as rendering parameters are gathered in the settings dictionary,
and,

• The world objects are collected in another one, separating out shapes, instances, lights,
materials, and any other scene specific object.

Importer
The Importer

.pbrt

Importer

Tokenizer Parser Importer
Tokens IR

def create(settings, world):
"""Import and convert all PBRT objects."""

render_properties(settings)
camera(settings, world)

for m in world["materials"]:
material(m)

for s in world["shapes"]:
shape(s)

...

33/60

Importer
The Importer

.pbrt

Importer

Tokenizer Parser Importer
Tokens IR

def create(settings, world):
"""Import and convert all PBRT objects."""

render_properties(settings)
camera(settings, world)

for m in world["materials"]:
material(m)

for s in world["shapes"]:
shape(s)

...20
25

-0
1-
11 The Importer

Importer

And the last thing we need to do then is simply to convert this representation to Blender objects,
which is what happens in the actual importer part.

And that part is not particularly fancy: It applies the appropriate rendering and camera prop-
erties, then simply loops over each of the quantities that should be converted from PBRT to
Blender objects.

Import Shape
The Importer

.pbrt

Importer

Tokenizer Parser Importer
Tokens IR

def shape(s):
"""Convert a PBRT shape to a Blender shape."""
SHAPE_BUILDER = {

"sphere": sphere,
"trianglemesh": trianglemesh,

}
if s.type not in SHAPE_BUILDER:

print(f"WARN: Unsupported shape: {s}")
return

build = SHAPE_BUILDER[s.type]
build(s)

34/60

Import Shape
The Importer

.pbrt

Importer

Tokenizer Parser Importer
Tokens IR

def shape(s):
"""Convert a PBRT shape to a Blender shape."""
SHAPE_BUILDER = {

"sphere": sphere,
"trianglemesh": trianglemesh,

}
if s.type not in SHAPE_BUILDER:

print(f"WARN: Unsupported shape: {s}")
return

build = SHAPE_BUILDER[s.type]
build(s)20

25
-0
1-
11 The Importer

Import Shape

And just to show an example, when we import a single shape I typically do it like this. In short,
I create a mapping over all shapes currently supported by the importer to a dedicated function
that create that specific shape.

This way I can quite easily add support for new shapes as necessary by simply adding new import
functions.

Import Sphere
The Importer

.pbrt

Importer

Tokenizer Parser Importer
Tokens IR

def sphere(s):
"""Convert a PBRT sphere to a Blender shape."""
r = s.parameters.get("radius", [1.0])[0]
trf = mathutils.Matrix(s.start_transform)
T, R, S = trf.decompose()
opts = dict(radius=r,

location=T,
rotation=R.to_euler(),
scale=S)

bpy.ops.mesh.primitive_uv_sphere_add(**opts)

35/60

Import Sphere
The Importer

.pbrt

Importer

Tokenizer Parser Importer
Tokens IR

def sphere(s):
"""Convert a PBRT sphere to a Blender shape."""
r = s.parameters.get("radius", [1.0])[0]
trf = mathutils.Matrix(s.start_transform)
T, R, S = trf.decompose()
opts = dict(radius=r,

location=T,
rotation=R.to_euler(),
scale=S)

bpy.ops.mesh.primitive_uv_sphere_add(**opts)20
25

-0
1-
11 The Importer

Import Sphere

And for a PBRT sphere, we can thus extract the parsed parameters and create a normal Blender
object from this, such as a uv sphere in this case.

However, the astute among you probably recognizes though that this doesn’t really import a
sphere as much as it converts it to a mesh object. So that is what I will address next...

Proxy Objects and Render Properties

Proxy Objects and Render Properties

20
25

-0
1-
11 Proxy Objects and Render Properties

Sum Types and Object Orientation

enum PbrtObject
{

None,
Camera(...),
Light(...),
Sphere{radius: f32},
Cylinder{radius: f32,

height: f32},
}

PbrtObject

None
Camera

- ...

Light

- ...

Sphere

- radius

Cylinder

- radius

- height

36/60

Sum Types and Object Orientation

enum PbrtObject
{

None,
Camera(...),
Light(...),
Sphere{radius: f32},
Cylinder{radius: f32,

height: f32},
}

PbrtObject

None
Camera

- ...

Light

- ...

Sphere

- radius

Cylinder

- radius

- height

20
25

-0
1-
11 Proxy Objects and Render Properties

Sum Types and Object Orientation

Larger rendering framework, particularly educational ones often arrange supported types in
hierarchies, typically using object oriented programming.

And we kind of want to do something similar: We want to tell Blender that this specific object
is actually a sphere, with this and that property, whereas that other one is a cylinder with these
other properties, etc.

In some programming languages such as Rust, this is effectively captured using something called
sum-types, or more simply enums. And we kind of would like something similar for properties
in Blender.

Faking it in Blender – 1

class PbrtSphere(bpy.types.PropertyGroup):
"""PBRT Sphere properties."""

radius: bpy.props.FloatProperty(
name="radius",
description="The sphere's radius.",
default=1.0,

)

37/60

Faking it in Blender – 1

class PbrtSphere(bpy.types.PropertyGroup):
"""PBRT Sphere properties."""

radius: bpy.props.FloatProperty(
name="radius",
description="The sphere's radius.",
default=1.0,

)

20
25

-0
1-
11 Proxy Objects and Render Properties

Faking it in Blender – 1

And as far as I know, there is no direct support for something like that, but it is relatively easy
to fake it with a bit of Python meta-programming.

First, we would start with creating a property class, such as this one for a sphere.

Faking it in Blender – 2
class PbrtShape(PropertyGroup):

type: EnumProperty(
name="type",
items=[("none", "None", ""),

("camera", "Camera", ""),
("light", "Light", ""),
("sphere", "Sphere", ""),
("cylinder", "Cylinder", ""), ...],

default="none")
none: BoolProperty(name="none", default=False)
camera: PointerProperty(type=PbrtCamera)
light: PointerProperty(type=PbrtLight)
sphere: PointerProperty(type=PbrtSphere)
cylinder: PointerProperty(type=PbrtCylinder)

38/60

Faking it in Blender – 2
class PbrtShape(PropertyGroup):

type: EnumProperty(
name="type",
items=[("none", "None", ""),

("camera", "Camera", ""),
("light", "Light", ""),
("sphere", "Sphere", ""),
("cylinder", "Cylinder", ""), ...],

default="none")
none: BoolProperty(name="none", default=False)
camera: PointerProperty(type=PbrtCamera)
light: PointerProperty(type=PbrtLight)
sphere: PointerProperty(type=PbrtSphere)
cylinder: PointerProperty(type=PbrtCylinder)20

25
-0
1-
11 Proxy Objects and Render Properties

Faking it in Blender – 2

Then we create another class to represent the entire hierarchy. Which in this case would include
cameras, lights and other objects, but most crucially, we have an enumeration of these different
options, allowing us to differentiate between them and store various properties in each sub-
type.

And this is where we get back to our imported sphere: By using some other kind of object as
a proxy, we can see and manipulate it instead, letting it contain things such as transforms, but
also keeping all unique object properties around as well.

Thus, when we import the sphere, we still create a uv sphere, but we also mark it is a sphere,
and add the unique sphere properties to it: That is, the radius in this case.

(Probably not ideal from a storage perspective, as we would have to store everything for all
objects, but seems to work okay in my prototype at least!)

Selecting the Derived Property

def draw(self, ctx):
"""Draw the edit category buttons."""
obj = ctx.selected_objects
otype = getattr(obj.pbrt, obj.pbrt.type)
for fname in otype.__annotations__.keys():

if hasattr(otype, fname):
self.layout.prop(otype, fname)

39/60

Selecting the Derived Property

def draw(self, ctx):
"""Draw the edit category buttons."""
obj = ctx.selected_objects
otype = getattr(obj.pbrt, obj.pbrt.type)
for fname in otype.__annotations__.keys():

if hasattr(otype, fname):
self.layout.prop(otype, fname)

20
25

-0
1-
11 Proxy Objects and Render Properties

Selecting the Derived Property

Furthermore, we can use a bit of Python meta-programming to do other tasks with this ap-
proach, such as drawing different panel layouts for different types of objects.

We simply grab the type property first, then trawl over the properties for that sub-type,
which themselves can be found in this slightly weird (__annotations__) double-underscored
(dunder) attribute.

Proxy Object Panel

40/60

Proxy Object Panel

20
25

-0
1-
11 Proxy Objects and Render Properties

Proxy Object Panel

So in my prototype, I use this technique to add a side-bar for adding and manipulating PBRT
properties:

In it, I can create new objects with PBRT attributes already set…

Updating and Converting Objects
Proxy Objects

41/60

Updating and Converting Objects
Proxy Objects

20
25

-0
1-
11 Proxy Objects and Render Properties

Updating and Converting Objects

…And also detect if the selected object is an active PBRT proxy, and then display or update those
properties in this interface. Further, for regular Blender object, there is the option to convert
them!

(Unfortunately, I haven’t come up with a good mechanism for updating how the object looks in
the UI just yet, e.g., if you change the sphre radius, but that may be possible with some kind of
listener object, but that is outside the scope of this talk.)

Render Properties

class RenderPBRT(bpy.types.RenderEngine):
bl_idname = ""
bl_label = ""

...

class RenderPBRT4(RenderPBRT):
bl_idname = "PBRT4"
bl_label = "PBRT4"

class RenderPBRT3(RenderPBRT):
bl_idname = "PBRT3"
bl_label = "PBRT3"

class RenderPBRT2(RenderPBRT):
bl_idname = "PBRT2"
bl_label = "PBRT2"

42/60

Render Properties

class RenderPBRT(bpy.types.RenderEngine):
bl_idname = ""
bl_label = ""

...

class RenderPBRT4(RenderPBRT):
bl_idname = "PBRT4"
bl_label = "PBRT4"

class RenderPBRT3(RenderPBRT):
bl_idname = "PBRT3"
bl_label = "PBRT3"

class RenderPBRT2(RenderPBRT):
bl_idname = "PBRT2"
bl_label = "PBRT2"

20
25

-0
1-
11 Proxy Objects and Render Properties

Render Properties

The same mechanism is also used to add some support for rendering properties.

This talk is mostly about importers and exporters, but as I mentioned before, the PBRT format is
a combined scene and rendering format, so we really need some notion of rendering properties
anyway.

Thankfully, it is actually really straightforward to add new renderers to contain such properties:
We only need a class that derives from the Blender RenderEngine type, although in my case I
wanted three different ones: One for each version of PBRT I intend to support.

Render Properties

43/60

Render Properties

20
25

-0
1-
11 Proxy Objects and Render Properties

Render Properties

Thus, when those are registered, we get three new drop-down entries in our Rendering menu:
One for each version.

Render Properties
Panel Example

class PbrtV4Accelerator(PbrtProperty):
"""PBRT Accelerator properties."""

type: bpy.props.EnumProperty(
name="Accelerator Type",
description="Accelerator Type",
items=[("bvh", "BVH", ""),

("kdtree", "Kd-Tree", "")],
default="bvh",

)

bvh: bpy.props.PointerProperty(type=PbrtV4BvhAccelerator)
kdtree: bpy.props.PointerProperty(type=PbrtV4KdTreeAccelerator)

44/60

Render Properties
Panel Example

class PbrtV4Accelerator(PbrtProperty):
"""PBRT Accelerator properties."""

type: bpy.props.EnumProperty(
name="Accelerator Type",
description="Accelerator Type",
items=[("bvh", "BVH", ""),

("kdtree", "Kd-Tree", "")],
default="bvh",

)

bvh: bpy.props.PointerProperty(type=PbrtV4BvhAccelerator)
kdtree: bpy.props.PointerProperty(type=PbrtV4KdTreeAccelerator)20

25
-0
1-
11 Proxy Objects and Render Properties

Render Properties

That was the easy part though. After that, you unfortunately need to create separate panels
and property classes for each property you want to control.

Here’s an example of this for the Accelerator property in PBRT version 4 and an example panel
that adapts to the different property types, just as for the proxy objects.

20
25

-0
1-
11 Proxy Objects and Render Properties

Unfortunately for me though, there are still loads of these properties and panels, which was
quite tedious to create, but should hopefully be done now, barring bugs of course.

The Exporter

The Exporter

20
25

-0
1-
11 The Exporter

The Exporter

.pbrtExporter

46/60

The Exporter

.pbrtExporter

20
25

-0
1-
11 The Exporter

The Exporter

So, that was all about the proxies and render properties, which leaves us with the exporter,
which arguably is one of the easier parts.

Earlier Work
The Exporter

.pbrtExporter

• https://github.com/giuliojiang/pbrt-v3-blender-exporter (2.79)
• https://github.com/stig-atle/io_scene_pbrt (2.8x)
• https://github.com/NicNel/bpbrt4 (2.9, Windows)

47/60

Earlier Work
The Exporter

.pbrtExporter

• https://github.com/giuliojiang/pbrt-v3-blender-exporter (2.79)
• https://github.com/stig-atle/io_scene_pbrt (2.8x)
• https://github.com/NicNel/bpbrt4 (2.9, Windows)

20
25

-0
1-
11 The Exporter

Earlier Work

And in fact, there already exists quite a few PBRT exporters out there, although, they are all
probably due for an update, judging from their READMEs and currently advertised Blender ver-
sion support.

But, that’s no reason to harp on them. Just that they exist is a great boon, and makes for a good
starting point when continuing the work, even if I am starting from scratch.

https://github.com/giuliojiang/pbrt-v3-blender-exporter
https://github.com/stig-atle/io_scene_pbrt
https://github.com/NicNel/bpbrt4
https://github.com/giuliojiang/pbrt-v3-blender-exporter
https://github.com/stig-atle/io_scene_pbrt
https://github.com/NicNel/bpbrt4

Back to the Exporter
What do we need?

.pbrtExporter

• An Export Operator1

• An Export Panel2 (optional)
• An Export Menu Entry3 (optional)

1https://docs.blender.org/manual/en/latest/interface/operators.html
2https://docs.blender.org/api/current/bpy.types.Panel.html
3https://docs.blender.org/api/current/bpy.types.Menu.html

48/60

Back to the Exporter
What do we need?

.pbrtExporter

• An Export Operator1

• An Export Panel2 (optional)
• An Export Menu Entry3 (optional)

1https://docs.blender.org/manual/en/latest/interface/operators.html
2https://docs.blender.org/api/current/bpy.types.Panel.html
3https://docs.blender.org/api/current/bpy.types.Menu.html20

25
-0
1-
11 The Exporter

Back to the Exporter

So, what do we actually need to create an exporter?

Basically, we need exactly the same things as we do for the importer:

• An operator to do actual export, and then, optionally,

– a panel and a menu entry.

https://docs.blender.org/manual/en/latest/interface/operators.html
https://docs.blender.org/api/current/bpy.types.Panel.html
https://docs.blender.org/api/current/bpy.types.Menu.html
https://docs.blender.org/manual/en/latest/interface/operators.html
https://docs.blender.org/api/current/bpy.types.Panel.html
https://docs.blender.org/api/current/bpy.types.Menu.html

The Operator
The Exporter

.pbrtExporter

class ExportPBRT(bpy.types.Operator, bpy_extras.io_utils.ExportHelper):
"""Blender Exporter class for PBRT scenes."""
... Config variables...

def draw(self, context):
"""Specify how to draw the Blender panel UI."""

def execute(self, context):
"""Execute the PBRT export process."""

49/60

The Operator
The Exporter

.pbrtExporter

class ExportPBRT(bpy.types.Operator, bpy_extras.io_utils.ExportHelper):
"""Blender Exporter class for PBRT scenes."""
... Config variables...

def draw(self, context):
"""Specify how to draw the Blender panel UI."""

def execute(self, context):
"""Execute the PBRT export process."""

20
25

-0
1-
11 The Exporter

The Operator

And the operator is very similar to our importer, the main difference is that instead of deriving
from the ImportHelper, we derive from the ExportHelper.

After that, we still need a set of configuration variables, a drawmethod if we want a panel, and
an execute method to actually drive the operator.

The Operator
The Exporter – Configuration Variables

.pbrtExporter

class ExportPBRT(bpy.types.Operator, bpy_extras.io_utils.ExportHelper):
"""Blender Exporter class for PBRT scenes."""
bl_idname = "export_scene.pbrt"
bl_label = "Export PBRT"
bl_options = {'PRESET'}
filename_ext = ".pbrt"
filter_glob: StringProperty(default="*.pbrt;*.pbrt.gz")
mode: EnumProperty()
compress: BoolProperty()

50/60

The Operator
The Exporter – Configuration Variables

.pbrtExporter

class ExportPBRT(bpy.types.Operator, bpy_extras.io_utils.ExportHelper):
"""Blender Exporter class for PBRT scenes."""
bl_idname = "export_scene.pbrt"
bl_label = "Export PBRT"
bl_options = {'PRESET'}
filename_ext = ".pbrt"
filter_glob: StringProperty(default="*.pbrt;*.pbrt.gz")
mode: EnumProperty()
compress: BoolProperty()

20
25

-0
1-
11 The Exporter

The Operator

For the configuration variables, it is very similar: We need an identifier to call the operator using
the bl_idname variable.

The main difference is that we don’t have to worry about multiple files this time: Once started,
the intended export location can be found in the filepath property, which we don’t even have
to create explicitly thanks to the inheritance hierarchy here.

(We can of course still export to multiple files, but that is probably better handled manually
instead.)

The Panel
The Exporter

def draw(self, context):
"""Specify how to draw the Blender panel UI."""
sfile = context.space_data
operator = sfile.active_operator
layout = self.layout
layout.use_property_split = True
layout.use_property_decorate = False
layout.prop(operator, "mode")
layout.prop(operator, "compress")

51/60

The Panel
The Exporter

def draw(self, context):
"""Specify how to draw the Blender panel UI."""
sfile = context.space_data
operator = sfile.active_operator
layout = self.layout
layout.use_property_split = True
layout.use_property_decorate = False
layout.prop(operator, "mode")
layout.prop(operator, "compress")

20
25

-0
1-
11 The Exporter

The Panel

The draw panel, again, works the same, you either add it directly as a draw method in the
operator class, or create a separate one for it. Giving us a panel that looks something like what
you can see up here.

The Operator
The Exporter – execute()

.pbrtExporter

def execute(self, context):
"""Execute the PBRT export process."""
with open(self.filepath, "w", encoding="utf-8") as f:

with contextlib.redirect_stdout():
export_camera(self.mode, context)
export_renderer(self.mode, context)
export_world(self.mode, context)

return {"FINISHED"}

52/60

The Operator
The Exporter – execute()

.pbrtExporter

def execute(self, context):
"""Execute the PBRT export process."""
with open(self.filepath, "w", encoding="utf-8") as f:

with contextlib.redirect_stdout():
export_camera(self.mode, context)
export_renderer(self.mode, context)
export_world(self.mode, context)

return {"FINISHED"}

20
25

-0
1-
11 The Exporter

The Operator

And of course, we need to actually do something when we export, which we handle by imple-
menting the execute function.

And here, you are simply given a file-path, which you should use to populate with your scene
and render data. How you do it however, is entirely up to you. I happen to like to use regular
print statements by temporarily redirecting stdout, but to each their own.

The Operator
The Exporter – export_renderer()

.pbrtExporter

def export_renderer(mode, ctx):
"""Export PBRT renderer settings."""
prop = getattr(ctx.scene.PbrtRenderProperties, mode)
prop.to_pbrt()

53/60

The Operator
The Exporter – export_renderer()

.pbrtExporter

def export_renderer(mode, ctx):
"""Export PBRT renderer settings."""
prop = getattr(ctx.scene.PbrtRenderProperties, mode)
prop.to_pbrt()

20
25

-0
1-
11 The Exporter

The Operator

As for actually printing the various settings: Here’s a short example of how I do it:

1. First, I simply extract the rendering properties, which of course, may differ somewhat
depending on which version of PBRT is actually being used.

2. Then, I call this to_pbrt convenience method.

The Operator
The Exporter – to_pbrt()

.pbrtExporter

def to_pbrt(self):
"""Print a PBRT representation of this object."""
ptype = getattr(self, self.type)
print(f"{self.NAME} \"{self.type}\"")
for name in ptype.__annotations__.keys():

prop = ptype.rna_type.properties[name]
val = getattr(ptype, name)
ntype = pbrt_type(val, prop)
val = pbrt_value(val, prop)
print(f"\"{ntype} {name}\" [{val}]")

54/60

The Operator
The Exporter – to_pbrt()

.pbrtExporter

def to_pbrt(self):
"""Print a PBRT representation of this object."""
ptype = getattr(self, self.type)
print(f"{self.NAME} \"{self.type}\"")
for name in ptype.__annotations__.keys():

prop = ptype.rna_type.properties[name]
val = getattr(ptype, name)
ntype = pbrt_type(val, prop)
val = pbrt_value(val, prop)
print(f"\"{ntype} {name}\" [{val}]")20

25
-0
1-
11 The Exporter

The Operator

And that method, is this, which I suspect is a bit hard to read here, but in short it uses the
same basic method that I used for the proxy and render objects, but this time to print out the
properties in the correct PBRT format.

This of course means that we need to perform a bit of type and value translations to match
what PBRT expects, but nothing truly major needs to be done here. And, the main reason this is
a method is to allow inheritance to specialize the few corner cases that uses a slightly different
format.

The Operator
The Exporter – export_world()

.pbrtExporter

def export_world(engine, ctx):
"""Export the PBRT world objects."""
print("WorldBegin")
for obj in bpy.data.objects:

if obj.type == "LIGHT":
export_light(obj, engine, ctx)

else:
export_shape(obj, engine, ctx)

if engine in ("PBRT2", "PBRT3"):
print("WorldEnd")

55/60

The Operator
The Exporter – export_world()

.pbrtExporter

def export_world(engine, ctx):
"""Export the PBRT world objects."""
print("WorldBegin")
for obj in bpy.data.objects:

if obj.type == "LIGHT":
export_light(obj, engine, ctx)

else:
export_shape(obj, engine, ctx)

if engine in ("PBRT2", "PBRT3"):
print("WorldEnd")20

25
-0
1-
11 The Exporter

The Operator

And for the world objects themselves, there is, I hope, nothing really unexpected happening
here: We simply traverse the list of scene objects and print an appropriate representation for
each of them.

The Operator
The Exporter – export_shape()

.pbrtExporter

def export_shape(obj, mode, ctx):
"""Export a PBRT shape."""
print("AttributeBegin")
print(" Transform %s" % (get_transform(obj)))
print(" Material ..." % (get_material(obj)))
if obj.pbrt.type != "none":

export_pbrt_object(obj, mode, ctx)
elif obj.type == "MESH":

...
print("AttributeEnd")

56/60

The Operator
The Exporter – export_shape()

.pbrtExporter

def export_shape(obj, mode, ctx):
"""Export a PBRT shape."""
print("AttributeBegin")
print(" Transform %s" % (get_transform(obj)))
print(" Material ..." % (get_material(obj)))
if obj.pbrt.type != "none":

export_pbrt_object(obj, mode, ctx)
elif obj.type == "MESH":

...
print("AttributeEnd")20

25
-0
1-
11 The Exporter

The Operator

Which, for a shape looks something like this. Which, really is just:

1. Print an AttributeBegin and End wrapper to avoid material and transforms from
affecting other objects, then

2. Print out the world transform and material for the object, and,

3. Check if the object has been marked as a proxy, and if so, handle it specially and print
that object the same as for the rendering property,

4. Otherwise, convert the regular Blender objects to something PBRT can recognize, such as
meshes, etc.

And that is pretty much everything I have to say about exporters.

Missing Feature(s)

• Spectral Properties

Metals⌄ Lights ⌄Presets Load

λ 0.5800nm

+ -

57/60

Missing Feature(s)

• Spectral Properties

Metals⌄ Lights ⌄Presets Load

λ 0.5800nm

+ -

20
25

-0
1-
11 The Exporter

Missing Feature(s)

The last thing I wanted to bring up is something I haven’t yet found a good way of solving:
Namely spectral properties.

In short, the RGB colors we use are really just a very efficient hack to represent material prop-
erties, but they have some real limitations when it comes to representing things in a physically
correct way: In reality, how light interacts with a material can differ a lot depending on what
part of the spectrum the light actually contain.

Right now, I am simply doing a lossy conversion to RGB for everything, since I couldn’t find a
practical way ofworkingwith spectral data in Blender. Obviously, I could simply keep the original
spectra somewhere for PBRT objects, but that makes them impractical to modify.

I figured it would be nice to have some kind of UI widget for spectra like this, similar to curves:
Allowing us pick some presets from metals or lights, and then allow us to modify the responses
accordingly. But that is just me musing on what would be nice for working with spectral prop-
erties in Blender, and not an actual suggestion.

Conclusions

Conclusions

20
25

-0
1-
11 Conclusions

Conclusion

1. PBRT

2. Importers / Exporters

3. Render Properties and Proxies

58/60

Conclusion

1. PBRT

2. Importers / Exporters

3. Render Properties and Proxies

20
25

-0
1-
11 Conclusions

Conclusion

Which brings me to the end of this talk, and just to quickly summarize things: During this pre-
sentation I’ve talked about…

• PBRT; what it is, and what kind of renderings it can do, along with its file-format, and,

• Briefly shown how to create custom importers and exporters for Blender, using PBRT as an
example, as well as,

• How to add rendering properties to influence these, and,

• How to use proxy objects in Blender to represent PBRT objects.

Thanks for Listening!
Questions and Answers

• Thanks for listening!
• Questions and Answers ?

59/60

Thanks for Listening!
Questions and Answers

• Thanks for listening!
• Questions and Answers ?

20
25

-0
1-
11 Conclusions

Thanks for Listening!

And with all that, I think it’s about time to conclude the presentation, and I guess open up for
any other kind of questions and, I hope, some answers!

Links / Contact

Making Blender♥ PBRT
Create your own Importers and Exporters
• https://gustafwaldemarson.com/

– https://gustafwaldemarson.com/pages/publications/
• gustaf.waldemarson@cs.lth.se
• gustaf.waldemarson@arm.com

60/60

Links / Contact

Making Blender♥ PBRT
Create your own Importers and Exporters
• https://gustafwaldemarson.com/

– https://gustafwaldemarson.com/pages/publications/
• gustaf.waldemarson@cs.lth.se
• gustaf.waldemarson@arm.com

20
25

-0
1-
11 Conclusions

Links / Contact

Before I end: You can (eventually) find links to most of the material related to this work on
my homepage, and of course, if anyone has more questions about PBRT, or even glTF, Vulkan
ray-tracing or micromaps that I talked about last year, feel free to contact me on any of these
emails, or just chat me up at some point during the conference!

https://gustafwaldemarson.com/
https://gustafwaldemarson.com/pages/publications/
gustaf.waldemarson@cs.lth.se
gustaf.waldemarson@arm.com
https://gustafwaldemarson.com/
https://gustafwaldemarson.com/pages/publications/
gustaf.waldemarson@cs.lth.se
gustaf.waldemarson@arm.com

The End

The End

20
25

-0
1-
11 Conclusions

Extras

Extras

20
25

-0
1-
11 Extras

Superluminal Reactor Rendering

1/7

Superluminal Reactor Rendering

20
25

-0
1-
11 Extras

Superluminal Reactor Rendering

Testing Pipeline

.pbrt.pbrt ExporterImporter
.exr

.exr

2/7

Testing Pipeline

.pbrt.pbrt ExporterImporter
.exr

.exr

20
25

-0
1-
11 Extras

Testing Pipeline

Intermission:
Installing and Enabling Addons

Intermission:
Installing and Enabling Addons

20
25

-0
1-
11 Intermission:

Installing and Enabling Addons

Intermission: Installing and Enabling Addons
Blender <= 4.1

3/7

Intermission: Installing and Enabling Addons
Blender <= 4.1

20
25

-0
1-
11 Intermission:

Installing and Enabling Addons

Intermission: Installing and Enabling Addons

And now is a good point for this little reminder for completeness’s sake: I typically install a
new by dropping the file into the addon directory, but forget to enable it, and then sit around
scratching my head for a bit wondering where all my stuff has gone.

So this is easily fixed done by opening the Edit-menu, and going to Preferences dialogue.

Intermission: Installing and Enabling Addons
Blender <= 4.1

4/7

Intermission: Installing and Enabling Addons
Blender <= 4.1

20
25

-0
1-
11 Intermission:

Installing and Enabling Addons

Intermission: Installing and Enabling Addons

Here, we open the Add-ons section. Then I recommend enabling all sections and searching for
“gltf”. Then simply click enable to make the add-on usable.

I’m sure there’s a way of doing this automatically, but it is a good thing to be able to find these
settings, and you only have to do this once anyways.

Intermission: Installing and Enabling Addons
Blender 4.2+ (Legacy Addons)

5/7

Intermission: Installing and Enabling Addons
Blender 4.2+ (Legacy Addons)

20
25

-0
1-
11 Intermission:

Installing and Enabling Addons

Intermission: Installing and Enabling Addons

However, in Blender 4.2, the addons have changed somewhat: If I understand correctly, they
have been split up into ’addons’ for old-school ones, and extensions for new properly updated
ones.

Legacy addons are installed just as before: Simply add the files in the appropriate directory and
enable it among the preferences.

Intermission: Installing and Enabling Addons
Blender 4.2+ (Extensions)

6/7

Intermission: Installing and Enabling Addons
Blender 4.2+ (Extensions)

20
25

-0
1-
11 Intermission:

Installing and Enabling Addons

Intermission: Installing and Enabling Addons

New extensions however are found under a new tab, appropriately called extensions. Here,
addons can be downloaded and enabled directly over the internet, at least when Blender has
been given sufficient permissions to do so.

(It is also possible to add more repositories from here.)

It is my understanding that this will be the way addons should be developed going forward, as
it makes a lot of things easier under the hood, but I suggest you watch the talk about extensions
by Nika Kutsniashvili to learn more about this.

References I

[1] Matt Pharr, Wenzel Jakob, and Greg Humphreys. Physically Based Rendering: From
Theory to Implementation. 4th. MIT Press, 2023.

[2] Gustaf Waldemarson. Handling Custom Data in glTF Files with Exporter/Importer Plugins.
The Blender Foundation, Youtube. 2023. URL:
https://youtu.be/4fBGM8qc21M?t=1783.

[3] Gustaf Waldemarson and Michael Doggett. “Photon Mapping Superluminal Particles”.
In: Eurographics 2020 - Short Papers. Ed. by Alexander Wilkie and Francesco Banterle. The
Eurographics Association, 2020. ISBN: 978-3-03868-101-4. DOI: 10.2312/egs.20201004.

[4] Gustaf Waldemarson and Michael Doggett. “Succinct Opacity Micromaps”. In: Proc. ACM
Comput. Graph. Interact. Tech. 7.3 (Aug. 2024). DOI: 10.1145/3675385. URL:
https://doi.org/10.1145/3675385.

References I

[1] Matt Pharr, Wenzel Jakob, and Greg Humphreys. Physically Based Rendering: From
Theory to Implementation. 4th. MIT Press, 2023.

[2] Gustaf Waldemarson. Handling Custom Data in glTF Files with Exporter/Importer Plugins.
The Blender Foundation, Youtube. 2023. URL:
https://youtu.be/4fBGM8qc21M?t=1783.

[3] Gustaf Waldemarson and Michael Doggett. “Photon Mapping Superluminal Particles”.
In: Eurographics 2020 - Short Papers. Ed. by Alexander Wilkie and Francesco Banterle. The
Eurographics Association, 2020. ISBN: 978-3-03868-101-4. DOI: 10.2312/egs.20201004.

[4] Gustaf Waldemarson and Michael Doggett. “Succinct Opacity Micromaps”. In: Proc. ACM
Comput. Graph. Interact. Tech. 7.3 (Aug. 2024). DOI: 10.1145/3675385. URL:
https://doi.org/10.1145/3675385.20

25
-0
1-
11 Intermission:

Installing and Enabling Addons

References

https://youtu.be/4fBGM8qc21M?t=1783
https://doi.org/10.2312/egs.20201004
https://doi.org/10.1145/3675385
https://doi.org/10.1145/3675385
https://youtu.be/4fBGM8qc21M?t=1783
https://doi.org/10.2312/egs.20201004
https://doi.org/10.1145/3675385
https://doi.org/10.1145/3675385

	PBRT: Physically Based Rendering From Theory to Implementation
	The Importer
	Proxy Objects and Render Properties
	The Exporter
	Conclusions
	Appendix
	Extras
	Intermission: Installing and Enabling Addons
	References

